Synthesizing Masking Fault-Tolerant Systems from Deontic Specifications

نویسندگان

  • Ramiro Demasi
  • Pablo F. Castro
  • T. S. E. Maibaum
  • Nazareno Aguirre
چکیده

In this paper, we study the problem of synthesizing faulttolerant components from specifications, i.e., the problem of automatically constructing a fault-tolerant component implementation from a logical specification of the component, and the system’s required level of fault-tolerance. We study a specific level of fault-tolerance: masking tolerance. A system exhibits masking tolerance when both the liveness and the safety properties of the behaviors of the system are preserved under the occurrence of faults. In our approach, the logical specification of components is given in dCTL, a branching time temporal logic with deontic operators, especially designed for fault-tolerant component specification. The synthesis algorithm takes the component specification, and automatically determines whether a component with masking fault-tolerance is realizable, and the maximal set of faults supported for this level of tolerance. Our technique for synthesis is based on capturing masking fault-tolerance via a simulation relation. Furthermore, a combination of an extension of a synthesis algorithm for CTL to cope with dCTL specifications, with simulation algorithms, is defined in order to synthesize masking fault-tolerant implementations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Synthesis of Fault-tolerance

AUTOMATIC SYNTHESIS OF FAULT-TOLERANCE By Ali Ebnenasir Fault-tolerance is an important property of today’s software systems as we rely on computers in our daily affairs (e.g., medical equipments, transportation systems, etc). Since it is difficult (if not impossible) to anticipate all classes of faults that perturb a program while designing that program, it is desirable to incrementally add fa...

متن کامل

Complexity Issues in Automated Synthesis of Failsafe Fault - Tolerance 1

We focus on the problem of synthesizing failsafe fault-tolerance where fault-tolerance is added to an existing (fault-intolerant) program. A failsafe fault-tolerant program satisfies its specification (including safety and liveness) in the absence of faults. However, in the presence of faults, it satisfies its safety specification. We present a somewhat unexpected result that, in general, the p...

متن کامل

Masking Faults While Providing Bounded-Time Phased Recovery

We focus on synthesis techniques for transforming existing fault-intolerant real-time programs to fault-tolerant programs that provide phased recovery. A fault-tolerant program is one that satisfies its safety and liveness specifications as well as timing constraints in the presence of faults. We argue that in many commonly considered programs (especially in mission-critical systems), when faul...

متن کامل

Adding Fault-tolerance to State Machine-based Designs

Late detection of new types of faults often results in the evolution of faulttolerance requirements while developers have already created design artifacts. Thus, the reuse of an existing design in the development of a fault-tolerant version thereof has the potential to reduce the overall development costs. Moreover, the automation of such a reuse yields a fault-tolerant design that is correct b...

متن کامل

dCTL: A Branching Time Temporal Logic for Fault-Tolerant System Verification

With the increasing demand for highly dependable and constantly available systems, being able to reason about faults and their impact on systems is gaining considerable attention. In this paper, we are concerned with the provision of a logic especially tailored for describing fault tolerance properties, and supporting automated verification. This logic, which we refer to as dCTL, employs tempor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013